the playground at school is rectangular, and each dimension is a whole number. the playgrounds area is 3772 square feet, and it’s perimeter is 256 feet. what are the dimensions of the playground?

Respuesta :

Answer:

Length=82

width= 46

Step-by-step explanation:

Given:

Area of Rectangle}= 3772

Perimeter of Rectangle=256

[tex]\textrm{Formula of Perimeter of rectangle} = 2(length+width)[/tex]

Substituting the values we get:

[tex]2(l+b)=256\\l+b=\frac{256}{2}\\l+b=128\\l=128-b[/tex]

Now

[tex]\textrm{Formula of Area of rectangle}= length\times width[/tex]

Substituting the values we get:

[tex]l \times b= 3772[/tex]

Now from above equation derived for length we will substitute value of l in the above equation we will get.

[tex]b(128-b)=3772\\128b-b^{2} =3772\\[/tex]

Now taking left hand side to right handside we get

[tex]b^{2} -128b+3772=0\\b^{2}-46b-82b+3772=0\\b(b-46)-82(b-46)=0\\(b-46)(b-82)=0\\[/tex]

Now solving for both equation we get.

[tex]b-46=0 \\ b=46[/tex]

[tex]b-82=0\\b=82[/tex]

from above we can conclude that

length=82

width=46