n order to estimate the average electric usage per month, a sample of 44 houses were selected and the electric usage determined. The sample mean is 2,000 KWH. Assume a population standard deviation of 133 kilowatt hours. At 99% confidence, compute the upper bound of the interval estimate for the population mean.

Respuesta :

Answer: 2051.64 kilowatt hours.

Step-by-step explanation:

Given : Sample size : 44

The sample mean :  [tex]\overline{x}=2,000\text{ KWH. }[/tex]

Population standard deviation: [tex]s\igma= 133\text{ KWH. }[/tex]

z-value for 99% confidence interval : [tex]z_c=2.576[/tex]

The upper bound of the 99% confidence interval estimate for the  population mean :-

[tex]\overline{x}+z_c\dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]2000+(2.576)\dfrac{133}{\sqrt{44}}\\\\=2000+(2.576)(20.05)\\\\=2000+51.6488=2051.6488\approx2051.64[/tex]

Hence, the  upper bound of the 99% confidence interval estimate for the population mean = 2051.64 kilowatt hours.