In the simple linear regression model estimate Y = b0 + b1X

A. X - estimated average predicted value, Y – predictor, Y-intercept (b1), slope (b0)
B. Y - estimated average predicted value, X – predictor, Y-intercept (b0), slope (b1)
C. Y - estimated average predicted value, X – predictor, Y-intercept (b1), slope (b0)
D. X - estimated average predicted value, Y – predictor, Y-intercept (b0), slope (b1)

Respuesta :

Answer:

Option B) Y - estimated average predicted value, X – predictor, Y-intercept ([tex]b_0[/tex]), slope ([tex]b_1[/tex])    

Step-by-step explanation:

In the simple linear regression model estimate is given by:

[tex]Y = b_0 + b_1X[/tex]

Comparing this regression line with the slope intercept form, we get:

[tex]y = mx + c[/tex]

where m is the slope of the straight line and c is the y-intercept that is the value of y when x is zero.

here,

Y is the predicted variable or the variable we need to predict

X is the predictor or the variable that helps us to predict Y

[tex]b_1[/tex] is the slope of the regression line.

[tex]b_0[/tex] is the y-intercept or the value of y when x is zero.

Thus, Option B)

Y - estimated average predicted value, X – predictor, Y-intercept ([tex]b_0[/tex]), slope ([tex]b_1[/tex])