Answer:
[tex]a_c=112.85 m/s^2[/tex]
Explanation:
The centripetal acceleration is:
[tex]a_c=\frac{v^2}{R}[/tex]
[tex]y_f=\frac{1}{2}*a*t^2[/tex]
The acceleration on this axis is g and the y' is the distance above the ground so solve to t'
[tex]t=\sqrt{\frac{2*y_f}{g}}=\sqrt{\frac{2*1.31m}{9.8m/s^2}}[/tex]
[tex]t=0.517s[/tex]
Now the distance and the time take the ball lands, can find the speed using
[tex]v=\frac{x}{t}=\frac{2.87m}{0.517s}[/tex]
[tex]v=5.55m/s[/tex]
So finally the centripetal acceleration is
[tex]a_c=\frac{v^2}{r}=\frac{(5.5m/s)^2}{0.273m}[/tex]
[tex]a_c=112.85 m/s^2[/tex]