Respuesta :

For this case we have that by definition, the point-slope equation of a line is given by:

[tex]y-y_ {0} = m (x-x_ {0})[/tex]

Where:

m: It's the slope

[tex](x_ {0}, y_ {0})[/tex]: It is a point that belongs to the line

We find the slope with the given points:

[tex](x_ {1}, y_ {1}): (- 5,4)\\(x_ {2}, y_ {2}) :( 1,6)[/tex]

[tex]m = \frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}} = \frac {6-4} {1 - (- 5)} = \frac {2} {1 +5} = \frac {2} {6} = \frac {1} {3}[/tex]

Then, the equation is of the form:

[tex]y-y_ {0} = \frac {1} {3} (x-x_ {0})[/tex]

We substitute the point [tex](1,6)[/tex]:

[tex]y-6 = \frac {1} {3} (x-1)[/tex]

Finally, the equation is:

[tex]y-6 = \frac {1} {3} (x-1)[/tex]

Answer:

[tex]y-6 = \frac {1} {3} (x-1)[/tex]