Answer:
[tex]v1 = \sqrt{(2)}Vi[/tex]
[tex]v2 = \sqrt{(2/3)}Vi[/tex]
ANGLE is 35.3 degree celcius
Explanation:
Given data:
mass m and 3m
initial speed Vi
particle with mass m is moving toward left while particle with mass 3m is moving toward right
By using conservation of momentum :
[tex]mVi + 3m(-Vi) = mv1 +3mv2[/tex]
[tex]-2mVi = m(v1 + 3v2)[/tex]
[tex]-2Vi = v1 + 3v2[/tex]
conservation of energy :
[tex]m(Vi^2) + 3m(-Vi^2) = mv1^2 + 3mv2^2[/tex]
[tex]4mVi^2 = m(v1^2+3v2^2)[/tex]
[tex]4Vi^2 = v1^2+3v2^2[/tex]
After collision, particle with mass m moves at right angles, thus by considering conservation of momentum in x & y direction,
x direction : [tex]-2mVi = 3m.v2i[/tex]
[tex]-2Vi = 3v2i[/tex]
y direction : [tex]0 = m(v1)j+3m(v2)j[/tex]
[tex]-v1j = 3v2j[/tex]
subsitute these value in energy conservation
[tex]v1 = \sqrt{(2)}Vi[/tex]
[tex]v2 = \sqrt{(2/3)}Vi[/tex]
[tex]angle = tan^{-1}(\frac{\sqrt{(2)}}{2}) =[/tex]35.3 degree from x-axis