Answer:
90.9 seconds
Explanation:
m = Mass of liquid = Volume×Density
c = Specific heat
[tex]\Delta T[/tex] = Change in temperature
t = Time taken
Room temperature = 75 °F
Converting to Celsius
[tex](75-32)\times \frac{5}{9}=23.889\ ^{\circ}C[/tex]
Heat required to raise the temperature of water
[tex]Q=mc\Delta T\\\Rightarrow Q=100\times 10^{-6}\times 1000\times 4186\times (100-23.889)\\\Rightarrow Q=31860.0646\ J[/tex]
Power
[tex]P=\frac{Q}{t}\\\Rightarrow P=\frac{31860.0646}{8\times 60+55}\\\Rightarrow P=59.55152\ W[/tex]
Efficiency of the plate
[tex]\frac{59.5512}{283}\times 100=21.04282\%[/tex]
Heat required to raise the temperature of water
[tex]Q=mc\Delta T\\\Rightarrow Q=100\times 10^{-6}\times 784\times 2150\times (56-23.889)\\\Rightarrow Q=5412.63016\ J[/tex]
[tex]P=\frac{Q}{t}\\\Rightarrow t=\frac{Q}{P}\\\Rightarrow t=\frac{5412.63016}{0.2104282\times 283}\\\Rightarrow t=90.9\ s[/tex]
Time taken to heat the aceton is 90.9 seconds