Answer:
[tex]m=0.496 kg[/tex]
Explanation:
Knowing the potential energy in the spring is equal to the initial kinetic energy so:
[tex]F_s=E_K[/tex]
[tex]\frac{1}{2}*K*x^2=\frac{1}{2}*m_b*v_f^2[/tex]
[tex]\frac{1}{2}*205n/m*(0.35m)^2=\frac{1}{2}*m_b*v_f^2[/tex]
Now using the conservation of momentum
[tex]P_i=P_f[/tex]
[tex]m_b*v_i=(m_b+m_w)*v_f[/tex]
[tex]11.5x10^3kg*265m/s=(11.5x10^3kg+m)*v_f[/tex]
[tex]v_f=\frac{3.0475 kg*m/s}{(11.5x1063kg+m)}[/tex]
Replacing in initial equation so:
[tex]12.5556J=\frac{1}{2}*11.5x10^3kg*(\frac{3.0475 kg*m/s}{11.5x10^3kg+m})^2[/tex]
Solve to m
[tex]m=\frac{6.23}{12.556}[/tex]
[tex]m=0.496 kg[/tex]