Answer:
[tex]$ 6x - y + 9 = 0 $[/tex]
Step-by-step explanation:
When we are to find the equation of the line passing through two points, say [tex]$ (x_1,y_1) $[/tex] and [tex]$ (x_2, y_2) $[/tex] we use two -point form.
The two point form is as follows:
[tex]$ \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} $[/tex]
Here, [tex]$ (x_1, y_1) = (-1 , 3) $[/tex] and [tex]$ (x_2, y_2) = (-2, -3)$[/tex].
Therefore we have: [tex]$ \frac{y - 3}{-3 - 3} = \frac{x + 1}{-2 + 1} $[/tex]
[tex]$ \implies \frac{y - 3}{-6} = \frac{x + 1}{-1} $[/tex]
[tex]$ \implies -y + 3 = -6x - 6 $[/tex]
Therefore, we have: [tex]$ 6x - y + 9 = 0 $[/tex]