Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:
[tex]\gamma = 5/3[/tex]
T1 = 525 K
T2 = 275 K
We know that
[tex]P_1 = \frac{nRT_1}{v}[/tex]
[tex]P_2 = \frac{nrT_2}{v}[/tex]
n and v remain same at both side. so we have
[tex]\frac{P_1}{P_2} = \frac{T_1}{T_2} = \frac{525}{275} = \frac{21}{11}[/tex]
[tex]P_1 = \frac{21}{11} P_2[/tex] ..............1
let final pressure is P and temp [tex]T_1 {f} and T_2 {f}[/tex]
[tex]P_1^{1-\gamma} T_1^{\gamma} = P^{1 - \gamma}T_1 {f}^{\gamma}[/tex]
[tex]P_1^{-2/3} T_1^{5/3} = P^{-2/3} T_1 {f}^{5/3}[/tex] ..................2
similarly
[tex]P_2^{-2/3} T_2^{5/3} = P^{-2/3} T_2 {f}^{5/3}[/tex] .............3
divide 2 equation by 3rd equation
[tex]\frac{21}{11}^{-2/3} \frac{21}{11}^{5/3} = [\frac{T_1 {f}}{T_2 {f}}]^{5/3}[/tex]
[tex]T_1 {f} = 1.48 T_2 {f}[/tex]
thus, temperature on left side is 1.48 times the temperature on right