Respuesta :

frika

Answer:

2,047

Step-by-step explanation:

Given:

[tex]1+2+4+8+...[/tex]

Find:

[tex]S_{11}[/tex]

You are given the geometric sequence. From the given sum, you can see that

[tex]b_1=1\\ \\b_2=2=1\cdot 2=b_1\cdot 2\\ \\b_3=4=2\cdot 2=b_2\cdot 2\\ \\b_4=8=4\cdot 2=b_3\cdot 2\\ \\....\\ \\r=2[/tex]

To find the sum [tex]S_{11},[/tex] use formula

[tex]S_n=\dfrac{b_1(1-r^n)}{1-r}[/tex]

Hence,

[tex]S_{11}=\dfrac{1\cdot (1-2^{11})}{1-2}=\dfrac{1-2,048}{-1}=2,047[/tex]