A cold drink is taken from a cooler. Initially, its temperature is 5°C. After 25 minutes in a 20°C room its temperature has increased to 10°C.

(a) What is the temperature of the drink after 45 minutes? (Round your answer to two decimal places.)
12.77 °C (CORRECT)

(b) When will its temperature be 14°C? (Round your answer to two decimal places.)
56.56 minutes (INCORRECT)

Respuesta :

Answer:

(a) the temperature of the drink after 45 minutes is 12.77[tex]^{o}C[/tex]

(b) its temperature be 14[tex]^{o}C[/tex] at t =  56.50 Minutes

Step-by-step explanation:

Given information:

Initial temperature, [tex]T_{0}[/tex] = 5[tex]^{o}C[/tex]

Sorrounding temperature, C = 20[tex]^{o}C[/tex]

in 25 minute, T(25) = 10[tex]^{o}C[/tex]

(a) the temperature of the drink after 45 minutes

According Newton's law of cooling

T(t) = C + ([tex]T_{0}[/tex] - C)[tex]e^{-kt}[/tex]

where

[tex]T_{0}[/tex] = initial temperature

t = time

k = cooling constant

C = sorrounding temperature

Thus,

T(25) = 20 + (5 - 20)[tex]e^{-25k}[/tex]

10 = 20 - (15 [tex]e^{-25k}[/tex])

[tex]e^{-25k}[/tex] = [tex]\frac{20-10}{15}[/tex]

-25k = ln([tex]\frac{20-10}{15}[/tex])

k = - (ln([tex]\frac{20-10}{15}[/tex]))/25

  = 0.016

hence, the complete equation

T(t) = 20 + (5 - 20)[tex]e^{-0.016t}[/tex]

in 45 minute the temperature is

T(45) = 20 + (5 - 20)[tex]e^{-0.016 x 45}[/tex]

T(45) = 12.77[tex]^{o}C[/tex]

the temperature is 14[tex]^{o}C[/tex], so T(t) = 14[tex]^{o}C[/tex]

T(t) = 20 + (5 - 20)[tex]e^{-0.016t}[/tex]

14 = 20 + (5 - 20)[tex]e^{-0.016t}[/tex]

[tex]e^{-0.016t}[/tex] = [tex]\frac{20-14}{15}[/tex]

-0.016t = ln ([tex]\frac{20-14}{15}[/tex])

t = - (ln ([tex]\frac{20-14}{15}[/tex]))/ 0.016)

t = 56.50 Minutes