Answer: [tex]P[X\leq 3][/tex] = =0.4114
Explanation:
Given that ;
p=0.20
n = 20
Therefore we can compute the probability as;
[tex]P[X\leq 3]=P[X=0]+P[X=1]+P[X=2]+P[X=3][/tex]
where,
[tex]P[X=0]=\binom{20}{0}\times(0.20)^{0}\times(1-0.20)^{20}[/tex]
P[X=0] = 0.0115
[tex]P[X=1] = \binom{20}{1}\times(0.20)^{1}\times(1-0.20)^{19}[/tex]
P[X=1] = 0.0576
[tex]P[X=2] = \binom{20}{2}\times(0.20)^{2}\times(1-0.20)^{18}[/tex]
P[X=2] = 0.1369
[tex]P[X=3] = \binom{20}{3}\times(0.20)^{3}\times(1-0.20)^{17}[/tex]
P[X=3] = 0.2054
Therefore;
[tex]P[X\leq 3]=P[X=0]+P[X=1]+P[X=2]+P[X=3][/tex]
=0.0115+0.0576 +0.1369 + 0.2054
=0.4114