Respuesta :
Answer:
The expression that is equivalent is 2 RootIndex 3 StartRoot 3 EndRoot :
[tex]2\sqrt[3]{3}[/tex]
Step-by-step explanation:
Hi
As we have 24 Superscript one-third, this is [tex](24)^{\frac{1}{3}} =\sqrt[3]{24}[/tex].
[tex]\sqrt[3]{24}=\sqrt[3]{8*3}=\sqrt[3]{8} \sqrt[3]{3}[/tex], therefore
[tex]\sqrt[3]{8} =2[/tex], so [tex]\sqrt[3]{8} \sqrt[3]{3}=2\sqrt[3]{3}[/tex].
The expression which is equivalent to the expression [tex]24^\frac{1}{3}[/tex] is [tex]2*\sqrt[3]{3}[/tex]
What is an equation?
An equation is an expression that shows the relationship between two or more numbers and variables.
Given the expression:
[tex]24^\frac{1}{3}[/tex]
Hence, simplifying gives:
[tex]\sqrt[3]{24}=\sqrt[3]{8*3}=\sqrt[3]{8}* \sqrt[3]{3}=2*\sqrt[3]{3}[/tex]
The expression which is equivalent to the expression [tex]24^\frac{1}{3}[/tex] is [tex]2*\sqrt[3]{3}[/tex]
Find out more on equation at: https://brainly.com/question/2972832
#SPJ5