Respuesta :

ANSWER:

The factors of [tex]-x^{2} y^{2}+x^{4}+4 y^{2}-4 x^{2} \text { are }(2-x),(2+x),(y-x),(y+x)[/tex]

SOLUTION:

Given, polynomial is  [tex]-x^{2} y^{2}+x^{4}+4 y^{2}-4 x^{2}[/tex]

This is an polynomial in two variables with degree 4

So the given polynomial will have 4 factors.

We need to factorise the given polynomial.

Now, [tex]\begin{array}{l}{-x^{2} y^{2}+x^{4}+4 y^{2}-4 x^{2}} \\ {\left(-x^{2} y^{2}+4 y^{2}\right)+\left(x^{4}-4 x^{2}\right)}\end{array}[/tex]

[writing terms with y as one part and remaining as another part]\

Taking the common terms out of brackets.

[tex]y^{2}\left(-x^{2}+4\right)+-x^{2}\left(-x^{2}+4\right)[/tex]

Taking [tex]\left(-x^{2}+4\right)[/tex] as common

[tex]\left(2^{2}-x^{2}\right)\left(y^{2}-x^{2}\right)[/tex]

[tex](2-x)(2+x)(y-x)(y+x)\left[a^{2}-b^{2}=(a-b)(a+b)\right][/tex]

Hence the factors  of [tex]-x^{2} y^{2}+x^{4}+4 y^{2}-4 x^{2} \text { are }(2-x),(2+x),(y-x),(y+x)[/tex]