Respuesta :

Answer:

[tex]cos^{4}[/tex] x

Step-by-step explanation:

Using the trigonometric identities

1 + tan²x = sec²x and 1 - sin²x = cos²x

secx = [tex]\frac{1}{cosx}[/tex]

Given

[tex]\frac{1-sin^2x}{1+tan^2x}[/tex]

= [tex]\frac{cos^2x}{sec^2x}[/tex]

= [tex]\frac{cos^2x}{\frac{1}{cos^2x} }[/tex]

= cos²x × cos²x

= [tex]cos^{4}[/tex] x