What is the energy stored between 2 Carbon nuclei that are 1.00 nm apart from each other? HINT: Carbon nuclei have 6 protons and 1.00 nm = 1.00x10^-9m
A. 8.29x10^-18J
B. 2.30x10^-19J
C. 8.29x10^-10J
D. 8.29x10^-9J
E. 0 J

Respuesta :

Answer:

[tex]A. 8.29\times 10^{-18}\ J[/tex]

Explanation:

Given that:

p = magnitude of charge on a proton = [tex]1.6\times 10^{-19}\ C[/tex]

k = Boltzmann constant = [tex]9\times 10^{9}\ Nm^2/C^2[/tex]

r = distance between the two carbon nuclei = 1.00 nm = [tex]1.00\times 10^{-9}\ m[/tex]

Since a carbon nucleus contains 6 protons.

So, charge on a carbon nucleus is [tex]q = 6p=6\times 1.6\times 10^{-19}\ C=9.6\times 10^{-19}\ C[/tex]

We know that the electric potential energy between two charges q and Q separated by a distance r is given by:

[tex]U = \dfrac{kQq}{r}[/tex]

So, the potential energy between the two nuclei of carbon is as below:

[tex]U= \dfrac{kqq}{r}\\\Rightarrow U = \dfrac{kq^2}{r}\\\Rightarrow U = \dfrac{9\times10^9\times (9.6\times 10^{-19})^2}{1.0\times 10^{-9}}\\\Rightarrow U =8.29\times 10^{-18}\ J[/tex]

Hence, the energy stored between two nuclei of carbon is [tex]8.29\times 10^{-18}\ J[/tex].