Respuesta :
Answer:
[tex]r_2 = 976.65 m[/tex]
Direction is 19 degree South of East
Explanation:
Let say initial position is our reference
so we will have campsite position given as
[tex]r = 1.50 km[/tex] at 20 degree E of N
now we will have
[tex]r = 1500 sin20\hat i + 1500 cos20\hat j[/tex]
[tex]r = 513 \hat i + 1409.5\hat j[/tex]
now our displacement to walk around is given as
[tex]d_1 = 600 \hat j[/tex]
then we move 20 degree W of N and move 1200 m
so we will have
[tex]d_2 = 1200 sin20(-\hat i) + 1200cos20\hat j[/tex]
so our final position is given as
[tex]r_1 = d_1 + d_2[/tex]
[tex]r_1 = 600\hat j - 410.4 \hat i + 1127.6\hat j[/tex]
[tex]r_1 = -410.4 \hat i + 1727.6\hat j[/tex]
now we know that
[tex]r_1 + r_2 = r[/tex]
so final leg of the displacement is given as
[tex]r_2 = r - r_1[/tex]
[tex]r_2 = (513 \hat i + 1409.5\hat j) - (-410.4 \hat i + 1727.6\hat j)[/tex]
[tex]r_2 = 923.4\hat i - 318.1 \hat i[/tex]
so magnitude is given as
[tex]r_2 = \sqrt{923.4^2 + 318.1^2}[/tex]
[tex]r_2 = 976.65 m[/tex]
direction is given as
[tex]\theta = tan^{-1}\frac{y}{x}[/tex]
[tex]\theta = tan^{-1}\frac{-318.1}{923.4}[/tex]
[tex]\theta = -19 degree[/tex]
so it is 19 degree South of East