How much heat to change 1 mole of ice at -25 °C to steam at +125 °C? • heat to warm ice - heat to melt ice (no temperature change) - heat to warm water • heat to boil water (no temperature change) - heat to warm steam

Respuesta :

Answer : The amount of heat changes is, 56.463 KJ

Solution :

The conversions involved in this process are :

[tex](1):H_2O(s)(-25^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(4):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(5):H_2O(g)(100^oC)\rightarrow H_2O(g)(125^oC)[/tex]

Now we have to calculate the enthalpy change.

[tex]\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]+n\times \Delta H_{vap}+[m\times c_{p,g}\times (T_{final}-T_{initial})][/tex]

where,

[tex]\Delta H[/tex] = enthalpy change or heat changes = ?

n = number of moles of water = 1 mole

[tex]c_{p,s}[/tex] = specific heat of solid water = [tex]2.09J/g^oC[/tex]

[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]

[tex]c_{p,g}[/tex] = specific heat of liquid water = [tex]1.84J/g^oC[/tex]

m = mass of water

[tex]\text{Mass of water}=\text{Moles of water}\times \text{Molar mass of water}=1mole\times 18g/mole=18g[/tex]

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole

[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = 40.67 KJ/mole = 40670 J/mole

Now put all the given values in the above expression, we get

[tex]\Delta H=[18g\times 4.18J/gK\times (0-(-25))^oC]+1mole\times 6010J/mole+[18g\times 2.09J/gK\times (100-0)^oC]+1mole\times 40670J/mole+[18g\times 1.84J/gK\times (125-100)^oC][/tex]

[tex]\Delta H=56463J=56.463KJ[/tex]     (1 KJ = 1000 J)

Therefore, the amount of heat changes is, 56.463 KJ