Answer:1.44 s,10.17 m
Explanation:
Given
two balls are separated by a distance of 41.1 m
One person drops the ball from a height of 41.1 and another launches a ball with velocity of 41.1 m exactly at the same time.
Let the ball launches from ground travels a distance of x m in t sec
For Person on window
[tex]41.1-x=ut+\frac{1}{2}gt^2[/tex]
[tex]41.1-x=0+\frac{1}{2}\times 9.81\times t^2--------1[/tex]
For person at ground
[tex]x=v_ft-\frac{1}{2}gt^2---------2[/tex]
add (1) & (2)
[tex]41.1=v_ft-\frac{1}{2}gt^2+\frac{1}{2}gt^2[/tex]
[tex]41.1=v_ft[/tex]
and [tex]v_f[/tex] is given by
[tex]v_f=\sqrt{2\times 9.81\times 41.1}=28.39 m/s[/tex]
[tex]t=\frac{41.1}{28.39}=1.44 s[/tex]
Substitute value of t in equation 1
[tex]41.1-x=0+\frac{1}{2}\times 9.81\times 1.44^2[/tex]
41.1-x=10.171 m
Thus the two ball meet at distance of 10.17 m below the window.