Answer:
[tex]\Delta H_{rxn}[/tex] for the given reaction is -890.3 kJ
Explanation:
[tex]\Delta H_{rxn}=\sum n_{i}.\Delta H_{f}(product)_{i}-\sum n_{j}.\Delta H_{f}(reactant)_{j}[/tex]
where [tex]n_{i}[/tex] and [tex]n_{j}[/tex] represents number of moles of i-th product and j-th reactant in balanced reaction respectively.
Hence [tex]\Delta H_{rxn}=[1mol\times \Delta H_{f}(CO_{2})_{g}]+[2mol\times \Delta H_{f}(H_{2}O)_{l}]-[1mol\times \Delta H_{f}(CH_{4})_{g}]-[2mol\times \Delta H_{f}(O_{2})_{g}][/tex]
so, [tex]\Delta H_{rxn}=[1mol\times -393.5kJ/mol]+[2mol\times -285.8kJ/mol]-[1mol\times -74.8kJ/mol]+[2mol\times 0kJ/mol]=-890.3 kJ[/tex]
So, Correct answer is -890.3 kJ