Suppose you made 5 measurements of the speed of a rocket:10.2 m/s, 11.0 m/s, 10.7 m/s, 11.0 m/s and 10.5 m/s. From these measurements you conclude the rocket is traveling at a constant speed. Calculate the mean, standard deviation, and error on the mean.

Respuesta :

Answer:

mean = 10.68 m/s

standard deviation 0.3059

[/tex]\sigma_m = 0.14[/tex]  

Explanation:

1) [tex]Mean = \frac{ 10.2+11+10.7+11+10.5}{5}[/tex]

  mean = 10.68 m/s

2 ) standard deviation is given as

[tex]\sigma = \sqrt{ \frac{1}{N} \sum( x_i -\mu)^2}[/tex]

N = 5

   [tex]\sigma =\sqrt{ \frac{1}{5} \sum{( 10.2-10.68)^2+(11-10.68)^2 + (10.7- 10.68)^2+ (11- 10.68)^2++ (10.5- 10.68)^2[/tex]

SOLVING ABOVE RELATION TO GET STANDARD DEVIATION VALUE

\sigma  = 0.3059

3) ERROR ON STANDARD DEVIATION

[tex]\sigma_m = \frac{ \sigma}{\sqrt{N}}[/tex]

               [tex]= \frac{0.31}{\sqrt{5}}[/tex]

[tex]\sigma_m = 0.14[/tex]  

Answer:

Mean =  = 10.68 m/s

Standard deviation = σ = 0.342 m/s

Error =  0.153 .  

Explanation:

The data has 5 readings.

Let each of the readings be Y

Take average and find the mean X = (10.2+11+10.7+11+10.5)/5 = 53.4/5 = 10.68 m/s.

Take the difference between the data values and the mean and square them individually.

(10.2 - 10.68)² =(-0.48)² = 0.23

(11 - 10.68)² = 0.32² = 0.102

(10.7 - 10.68)² = (-0.02)² = 0.0004

(11-10.68)² =0.32² = 0.102

(10.5-10.68)² = (-0.18)² = 0.0324

Standard deviation = [tex]\sigma = \sqrt{\frac{\sum(Y-X)^2 }{n-1}}[/tex]

                                = [tex]\sqrt{(0.23+0.102+0.0004+0.102+0.0324)/(5-1)}[/tex]

                                 = [tex]\sqrt{0.1167}[/tex] = 0.342 m/s

Error = Standard deviation / [tex]\sqrt{n}[/tex] = 0.342/5 = 0.153 .