Answer:
Equivalent capacitance, [tex]C'=3.9\ \mu F[/tex]
Explanation:
Capacitance, [tex]C_1=9\ \mu F[/tex]
Capacitance, [tex]C_2=13\ \mu F[/tex]
Capacitance, [tex]C_3=16\ \mu F[/tex]
Let C' is the equivalent capacitance of the combination of capacitors. It is given by :
[tex]\dfrac{1}{C'}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}[/tex]
[tex]\dfrac{1}{C'}=\dfrac{1}{9}+\dfrac{1}{13}+\dfrac{1}{16}[/tex]
[tex]C'=3.99\ \mu F[/tex]
or
[tex]C'=3.9\ \mu F[/tex]
So, their equivalent capacitance is [tex]3.9\ \mu F[/tex]. Hence, this is the required solution.