Answer:
The energy transmitted per second down the wire is 0.761 watt.
Explanation:
Given that,
Length = 2.5 m
Amplitude = 3.0 mm
Density = 20 g/m
Frequency = 35 Hz
We need to calculate the wavelength
Using formula of wavelength
[tex]L = \dfrac{\lambda}{2}[/tex]
[tex]\lambda=2L[/tex]
Put the value into the formula
[tex]\lambda=2\times2.5[/tex]
[tex]\lambda=5\ m[/tex]
We need to calculate the speed
Using formula of speed
[tex]v = f\lambda[/tex]
Put the value into the formula
[tex]v =35\times5[/tex]
[tex]v =175\ m/s[/tex]
We need to calculate the energy is transmitted per second down the wire
Using formula of the energy is transmitted per second
[tex]P=\dfrac{1}{2}\mu A^2\omega^2\times v[/tex]
[tex]P=\dfrac{1}{2}\mu\times A^2\times(2\pi f)^2\times v[/tex]
Put the value into the formula
[tex]P=\dfrac{1}{2}\times20\times10^{-3}\times(3.0\times10^{-3})^2\times4\times\pi^2\times(35)^2\times175[/tex]
[tex]P=0.761\ watt[/tex]
Hence, The energy transmitted per second down the wire is 0.761 watt.