A piano wire of length 2.5 m vibrates so that one-half wavelength is contained on the string. If the frequency of vibration is 35 Hz, the amplitude of vibration is 3.0 mm, and the density is 20 g/m, how much energy is transmitted per second down the wire?

Respuesta :

Answer:

The energy transmitted per second down the wire is 0.761 watt.

Explanation:

Given that,

Length = 2.5 m

Amplitude = 3.0 mm

Density = 20 g/m

Frequency = 35 Hz

We need to calculate the wavelength

Using formula of wavelength

[tex]L = \dfrac{\lambda}{2}[/tex]

[tex]\lambda=2L[/tex]

Put the value into the formula

[tex]\lambda=2\times2.5[/tex]

[tex]\lambda=5\ m[/tex]

We need to calculate the speed

Using formula of speed

[tex]v = f\lambda[/tex]

Put the value into the formula

[tex]v =35\times5[/tex]

[tex]v =175\ m/s[/tex]

We need to calculate the energy is transmitted per second down the wire

Using formula of the energy is transmitted per second

[tex]P=\dfrac{1}{2}\mu A^2\omega^2\times v[/tex]

[tex]P=\dfrac{1}{2}\mu\times A^2\times(2\pi f)^2\times v[/tex]

Put the value into the formula

[tex]P=\dfrac{1}{2}\times20\times10^{-3}\times(3.0\times10^{-3})^2\times4\times\pi^2\times(35)^2\times175[/tex]

[tex]P=0.761\ watt[/tex]

Hence, The energy transmitted per second down the wire is 0.761 watt.