Respuesta :

Answer:

[tex]T_2=13.5\ N[/tex]

Explanation:

Given that,

Speed of transverse wave, v₁ = 20 m/s

Tension in the string, T₁ = 6 N

Let T₂ is the tension required for a wave speed of 30 m/s on the same string. The speed of a transverse wave in a string is given by :

[tex]v=\sqrt{\dfrac{T}{\mu}}[/tex]........(1)

T is the tension in the string

[tex]\mu[/tex] is mass per unit length

It is clear from equation (1) that :

[tex]v\propto\sqrt{T}[/tex]

[tex]\dfrac{v_1}{v_2}=\sqrt{\dfrac{T_1}{T_2}}[/tex]

[tex]T_2=T_1\times (\dfrac{v_2}{v_1})^2[/tex]

[tex]T_2=6\times (\dfrac{30}{20})^2[/tex]

[tex]T_2=13.5\ N[/tex]

So, the tension of 13.5 N is required for a wave speed of 30 m/s. Hence, this is the required solution.