The electric field in a region is uniform (constant in space) and given by E-( 148.0 1 -110.03)N/C. An additional charge 10.4 nC (nano-coulombs) is placed into this region. What is the y component of the electric force on this charge?

Respuesta :

Answer:

[tex]-1.144\ \mu C[/tex]

Explanation:

Given:

  • [tex]\vec{E}[/tex] = uniform electric field in the space = [tex](148.0\ \hat{i}-110.0\ \hat{j})\ N/C[/tex]
  • Q = Charge placed in the region = [tex]10.4 nC\ = 1.04\times 10^{-8}\ nC[/tex]

Assume:

  • [tex]\vec{F}[/tex] = Electric force on the charge due to electric field

We know that the electric field is the electric force applied on a unit positive charge i.e.,

[tex]\vec{E}=\dfrac{\vec{F}}{Q}[/tex]

This means the electric force applied on this additional charge placed in the field is given by:

[tex]\vec{F}=Q\vec{E}\\\Rightarrow \vec{F} =  1.04\times 10^{-8}\ n C\times (148.0\ \hat{i}-110.0\ \hat{j})\ N/C\\\Rightarrow \vec{F} = (1.539\ \hat{i}-1.144\ \hat{j})\ \mu N\\[/tex]

From the above expression of force, we have the following y-component of force on this additional charge.

[tex]F_y = -1.144\ \mu N[/tex]

Hence, the y-component of the electric force on the this charge is [tex]-1.144\ \mu N[/tex].