Answer:
E. [tex]2.09\frac{g}{L}[/tex]
Explanation:
From the ideal gasses equation we have:
PV=nRT
where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.
The number of moles is also expressed as: [tex]n=\frac{mass}{Molar mass}[/tex]
If replacing this in the ideal gasses equation we have:
[tex]PV=\frac{mass}{Molarmass}.RT[/tex]
If we pass V to divide, we have:
[tex]P=\frac{mass}{V}.\frac{RT}{Molarmass}[/tex]
And the density d = [tex]\frac{mass}{V}[/tex], so replacing, we have:
[tex]P=\frac{dRT}{M}[/tex]
Solving for d, we have:
[tex]d=\frac{P.M}{R.T}[/tex]
Now we have to be sure that we have the correct units, so we need to convert the units for pressure and temperature:
-Convert P=98kPa to atm
[tex]98.0kPa*\frac{0.00986923atm}{1kPa}=0.97atm[/tex]
-Convert T=-25.2°C to K
[tex]-25.2^{o}C+273.15=247.95K[/tex]
Finally we can replace the values in the equation:
[tex]d=\frac{(0.97atm)*(44.01\frac{g}{mol})}{(0.082\frac{atm.L}{mol.K})*(247.15K)}[/tex]
[tex]d=2.09\frac{g}{L}[/tex]