A convex thin lens with refractive index of 1.50 has a focal length of 30cm in air. When immersed in a certain transparent liquid, it becomes a negative lens of focal length of 188 cm. Determine the refractive index of the liquid.

Respuesta :

Answer:

[tex]n_l = 1.97[/tex]

Explanation:

given data:

refractive index of lens 1.50

focal length in air is 30 cm

focal length in water is -188 cm

Focal length of lens is given as

[tex]\frac{1}{f} =\frac{n_2 -n_1}{n_1} * \left [\frac{1}{r1} -\frac{1}{r2}   \right ][/tex]

[tex]\frac{1}{f} =\frac{n_{g} -n_{air}}{n_{air}} * \left [\frac{1}{r1} -\frac{1}{r2}   \right ][/tex]

[tex]\frac{1}{f} =\frac{n_{g} -1}{1} * \left [\frac{1}{r1} -\frac{1}{r2}   \right ][/tex]

focal length of lens in liquid is

[tex]\frac{1}{f} =\frac{n_{g} -n_{l}}{n_{l}} * \left [\frac{1}{r1} -\frac{1}{r2}   \right ][/tex]

                [tex]=\frac{n_{g} -n_{l}}{n_{l}}  [\frac{1}{(n_{g} - 1) f}[/tex]

rearrange fro[tex] n_l[/tex]

[tex]n_l = \frac{n_g f_l}{f_l+f(n_g-1)}[/tex]

[tex]n_l = \frac{1.50*(-188)}{-188 + 30(1.50 -1)}[/tex]

[tex]n_l = 1.97[/tex]