The equation giving a family of ellipsoids is u = (x^2)/(a^2) + (y^2)/(b^2) + (z^2)/(c^2) . Find the unit vector normal to each point of the surface of this ellipsoids.

Respuesta :

Answer:

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Step-by-step explanation:

Given equation of ellipsoids,

[tex]u\ =\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}[/tex]

The vector normal to the given equation of ellipsoid will be given by

[tex]\vec{n}\ =\textrm{gradient of u}[/tex]

            [tex]=\bigtriangledown u[/tex]

           

[tex]=\ (\dfrac{\partial{}}{\partial{x}}\hat{i}+ \dfrac{\partial{}}{\partial{y}}\hat{j}+ \dfrac{\partial{}}{\partial{z}}\hat{k})(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2})[/tex]

           

[tex]=\ \dfrac{\partial{(\dfrac{x^2}{a^2})}}{\partial{x}}\hat{i}+\dfrac{\partial{(\dfrac{y^2}{b^2})}}{\partial{y}}\hat{j}+\dfrac{\partial{(\dfrac{z^2}{c^2})}}{\partial{z}}\hat{k}[/tex]

           

[tex]=\ \dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}[/tex]

Hence, the unit normal vector can be given by,

[tex]\hat{n}\ =\ \dfrac{\vec{n}}{\left|\vec{n}\right|}[/tex]

             [tex]=\ \dfrac{\dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}}{\sqrt{(\dfrac{2x}{a^2})^2+(\dfrac{2y}{b^2})^2+(\dfrac{2z}{c^2})^2}}[/tex]

             

[tex]=\ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]

Hence, the unit vector normal to each point of the given ellipsoid surface is

[tex]\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}[/tex]