Use the given data at 500 K to calculate ΔG°for the reaction

2H2S(g) + 3O2(g) → 2H2O(g) + 2SO2(g)

Substance H2S(g) O2(g) H2O(g) SO2(g)
ΔH°f(kJ/mol) -21 0 -242 -296.8
S°(J/K·mol) 206 205 189 248

Respuesta :

Answer : The  value of [tex]\Delta G^o[/tex] for the reaction is -959.1 kJ

Explanation :

The given balanced chemical reaction is,

[tex]2H_2S(g)+3O_2(g)\rightarrow 2H_2O(g)+2SO_2(g)[/tex]

First we have to calculate the enthalpy of reaction [tex](\Delta H^o)[/tex].

[tex]\Delta H^o=H_f_{product}-H_f_{reactant}[/tex]

[tex]\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}][/tex]

where,

[tex]\Delta H^o[/tex] = enthalpy of reaction = ?

n = number of moles

[tex]\Delta H_f^0[/tex] = standard enthalpy of formation

Now put all the given values in this expression, we get:

[tex]\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)][/tex]

[tex]\Delta H^o=-1035.6kJ=-1035600J[/tex]

conversion used : (1 kJ = 1000 J)

Now we have to calculate the entropy of reaction [tex](\Delta S^o)[/tex].

[tex]\Delta S^o=S_f_{product}-S_f_{reactant}[/tex]

[tex]\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}][/tex]

where,

[tex]\Delta S^o[/tex] = entropy of reaction = ?

n = number of moles

[tex]\Delta S_f^0[/tex] = standard entropy of formation

Now put all the given values in this expression, we get:

[tex]\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)][/tex]

[tex]\Delta S^o=-153J/K[/tex]

Now we have to calculate the Gibbs free energy of reaction [tex](\Delta G^o)[/tex].

As we know that,

[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]

At room temperature, the temperature is 500 K.

[tex]\Delta G^o=(-1035600J)-(500K\times -153J/K)[/tex]

[tex]\Delta G^o=-959100J=-959.1kJ[/tex]

Therefore, the value of [tex]\Delta G^o[/tex] for the reaction is -959.1 kJ