Respuesta :
Answer : The value of [tex]\Delta G^o[/tex] for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,
[tex]2H_2S(g)+3O_2(g)\rightarrow 2H_2O(g)+2SO_2(g)[/tex]
First we have to calculate the enthalpy of reaction [tex](\Delta H^o)[/tex].
[tex]\Delta H^o=H_f_{product}-H_f_{reactant}[/tex]
[tex]\Delta H^o=[n_{H_2O}\times \Delta H_f^0_{(H_2O)}+n_{SO_2}\times \Delta H_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta H_f^0_{(H_2S)}+n_{O_2}\times \Delta H_f^0_{(O_2)}][/tex]
where,
[tex]\Delta H^o[/tex] = enthalpy of reaction = ?
n = number of moles
[tex]\Delta H_f^0[/tex] = standard enthalpy of formation
Now put all the given values in this expression, we get:
[tex]\Delta H^o=[2mole\times (-242kJ/mol)+2mole\times (-296.8kJ/mol)}]-[2mole\times (-21kJ/mol)+3mole\times (0kJ/mol)][/tex]
[tex]\Delta H^o=-1035.6kJ=-1035600J[/tex]
conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction [tex](\Delta S^o)[/tex].
[tex]\Delta S^o=S_f_{product}-S_f_{reactant}[/tex]
[tex]\Delta S^o=[n_{H_2O}\times \Delta S_f^0_{(H_2O)}+n_{SO_2}\times \Delta S_f^0_{(SO_2)}]-[n_{H_2S}\times \Delta S_f^0_{(H_2S)}+n_{O_2}\times \Delta S_f^0_{(O_2)}][/tex]
where,
[tex]\Delta S^o[/tex] = entropy of reaction = ?
n = number of moles
[tex]\Delta S_f^0[/tex] = standard entropy of formation
Now put all the given values in this expression, we get:
[tex]\Delta S^o=[2mole\times (189J/K.mol)+2mole\times (248J/K.mol)}]-[2mole\times (206J/K.mol)+3mole\times (205J/K.mol)][/tex]
[tex]\Delta S^o=-153J/K[/tex]
Now we have to calculate the Gibbs free energy of reaction [tex](\Delta G^o)[/tex].
As we know that,
[tex]\Delta G^o=\Delta H^o-T\Delta S^o[/tex]
At room temperature, the temperature is 500 K.
[tex]\Delta G^o=(-1035600J)-(500K\times -153J/K)[/tex]
[tex]\Delta G^o=-959100J=-959.1kJ[/tex]
Therefore, the value of [tex]\Delta G^o[/tex] for the reaction is -959.1 kJ