Tritium H) is an isotope of hydrogen that is sometimes used to make the hands of watches glow in the dark. The half-life of tritium is 123 years. If you start with 1 milligram of trition and wait 49 years, approximately how much of the original tritium remains? O a.6.25 Ob.3.12% O c.25 O d. 506 O e 12.5%

Respuesta :

Answer:

Percentage of the isotope left is 75.87 %.

Explanation:

Initial mass of the isotope = 1 mg

Time taken by the sample, t = [tex]t_{\frac{1}{2}}=123 years[/tex]

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope

N = mass of the parent isotope left after the time, (t)

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope

[tex]\lambda[/tex] = rate constant

[tex]\lambda =\frac{0.693}{123 year}=0.005635 year^{-1}[/tex]

[tex]N=N_o\times e^{-\lambda \times t}[/tex]

Now put all the given values in this formula, we get

[tex]N=1 mg\times e^{-0.005634 year^{-1}\times 49 years}[/tex]

[tex]N=0.7587 mg[/tex]

Percentage of the isotope left:

[tex]\frac{N}{N_o}\times 100[/tex]

=[tex]\frac{0.7587 mg}{1 mg}\times 100[/tex]

Percentage of the isotope left is 75.87 %.