What is the Ka of a weak acid (HA) if the initial concentration of weak acid is 4.5 x 10-4 M and the pH is 6.87? (pick one)

5.5 x 10-5

4.0 x 10-6

6.9 x 10-4

3.5 x 10-10

4.0 x 10-11

Respuesta :

Answer:

Ka = [tex]4.04 \times 10^{-11}[/tex]

Explanation:

Initial concentration of weak acid = [tex]4.5 \times 10^{-4}\ M[/tex]

pH = 6.87

[tex]pH = -log[H^+][/tex]

[tex][H^+]=10^{-pH}[/tex]

[tex][H^+]=10^{-6.87}=1.35 \times 10^{-7}\ M[/tex]

HA dissociated as:

[tex]HA \leftrightharpoons H^+ + A^{-}[/tex]

(0.00045 - x)    x     x

[HA] at equilibrium = (0.00045 - x) M

x = [tex]1.35 \times 10^{-7}\ M[/tex]

[tex]Ka = \frac{[H^+][A^{-}]}{[HA]}[/tex]

[tex]Ka = \frac{(1.35 \times 10^{-7})^2}{0.00045 - 0.000000135}[/tex]

0.000000135 <<< 0.00045

[tex]Therefore, Ka = \frac{(1.35 \times 10^{-7})^2}{0.00045 } = 4.04 \times 10^{-11}[/tex]