Answer:
The value of x is [tex]\frac{(3c+b)}{3-c}[/tex].
Step-by-step explanation:
The given equation is
[tex]cx+b=3(x-c)[/tex]
Using distributive property we get
[tex]cx+b=3(x)+3(-c)[/tex]
[tex]cx+b=3x-3c[/tex]
To solve the above equation isolate variable terms.
Subtract 3x and b from both sides.
[tex]cx-3x=-3c-b[/tex]
Taking out common factors.
[tex]x(c-3)=-(3c+b)[/tex]
Divide both sides by (c-3).
[tex]x=-\frac{(3c+b)}{c-3}[/tex]
[tex]x=\frac{(3c+b)}{3-c}[/tex]
Therefore the value of x is [tex]\frac{(3c+b)}{3-c}[/tex].