Respuesta :

Answer:

5.65

Explanation:

Given that:

[tex]pK_{b}\ of\ CH_3NH_2=3.44[/tex]

[tex]K_{b}\ of\ CH_3NH_2=10^{-3.44}=3.6308\times 10^{-4}[/tex]

[tex]K_a\ of\ CH_3NH_3^+Cl^-=\frac {K_w}{K_b}=\frac {10^{-14}}{3.6308\times 10^{-4}}=2.7542\times 10^{-11}[/tex]

Concentration = 0.18 M

Consider the ICE take for the dissociation as:

                              [tex]CH_3NH_3^+[/tex]   ⇄     H⁺ +  [tex]CH_3NH_2[/tex]

At t=0                           0.18                 -                            -

At t =equilibrium        (0.18-x)                x                         x            

The expression for dissociation constant of acetic acid is:

[tex]K_{a}=\frac {\left [ H^{+} \right ]\left [CH_3NH_2 \right ]}{[CH_3NH_3^+]}[/tex]

[tex]2.7542\times 10^{-11}=\frac {x^2}{0.18-x}[/tex]

x is very small, so (0.18 - x) ≅ 0.18

Solving for x, we get:

x = 0.2227×10⁻⁵  M

pH = -log[H⁺] = -log(0.2227×10⁻⁵) = 5.65