Answer:
The quadratic function whose graph contains these points is [tex]y=-x^{2}-2x-2[/tex]
Step-by-step explanation:
We know that a quadratic function is a function of the form [tex]y=ax^{2}+bx+c[/tex]. The first step is use the 3 points given to write 3 equations to find the values of the constants a,b, and c.
Substitute the points (0,-2), (-5,-17), and (3,-17) into the general form of a quadratic function.
[tex]-2=a*0^{2}+b*0+c\\c=-2[/tex]
[tex]-17=a*-5^{2}+b*-5+c\\c=-25a+5b-17[/tex]
[tex]-17=a*3^{2}+b*3+c\\ c=-9a-3b-17[/tex]
We can solve these system of equations by substitution
[tex]-9a-3b-17=25a+5b-17\\-9a-3b-17=-2[/tex]
[tex]-9a-3b-17=-25a+5b-17\\a=\frac{b}{2}[/tex]
[tex]-9\left(-\frac{b}{2}\right)-3b-17=-2[/tex]
[tex]-9\left(-\frac{4b}{17}\right)-3b-17=-2\\ b=-2[/tex]
[tex]a=\frac{b}{2}\\ a=-1[/tex]
The solutions to the system of equations are:
b=-2,a=-1,c=-2
So the quadratic function whose graph contains these points is
[tex]y=-x^{2}-2x-2[/tex]
As you can corroborate with the graph of this function.