A bacteria culture starts with 200 bacteria and grows at a rate proportional to its size. After 6 hours there will be 1200 bacteria (1) Express the population after I hours as a function of t. population: p(tepe (1.066-21) (unction of t) (b) What will be the population after 7 hours? 348125.2 (c) How long will it take for the population to reach 1750 ? Note: You can earn partial credit on this problem.

Respuesta :

Answer:

We are given that the rate of change is proportional to its size S

So, [tex]\frac{dS}{dt} \propto S[/tex]

[tex]\frac{dS}{dt} = kS[/tex]

[tex]\frac{dS}{S} = kdt[/tex]

Integrating both sides

[tex]\log(S)= kt + log c[/tex]

[tex]\frac{S}{S_0}=e^{kt}[/tex]

[tex]S=S_0 e^{kt}[/tex]

S is the population after t hours

[tex]S_0[/tex] is the initial population

Now we are given that After 6 hours there will be 1200 bacteria

[tex]1200=200 e^{6k}[/tex]

[tex]6=e^{6k}[/tex]

[tex]6^{\frac{1}{6}=e^{k}[/tex]

So, [tex]S=200 \times 6^{\frac{t}{6}[/tex]

a)Now the population after t hours as a function of t; [tex]S=200 \times 6^{\frac{t}{6}[/tex]

b)  What will be the population after 7 hours?

Substitute t = 7 hours

A bacteria culture starts with 200 bacteria

[tex]S=200 \times 6^{\frac{7}{6}}[/tex]

[tex]S=1617.607[/tex]

c) How long will it take for the population to reach 1750 ?

[tex]1750=200 \times 6^{\frac{t}{6}[/tex]

[tex]\frac{1750}{200} =6^{\frac{t}{6}[/tex]

[tex]8.75 =6^{\frac{t}{6}[/tex]

[tex]t=7.26[/tex]

So,  it will take 7.2 hours for the population to reach 1750