Answer:
Amplitude=2
Period=[tex]\frac{\pi}{3}[/tex]
Step-by-step explanation:
We are given that [tex]y=2sin6x[/tex]
We have to find the value of period and amplitude of the given function
We know that [tex]y=a sin(bx+c)+d [/tex]
Where a= Amplitude of function
Period of sin function =[tex]\frac{2\pi}{\mid b \mid}[/tex]
Comparing with the given function
Amplitude=2
Period=[tex]\frac{2\pi}{6}=\frac{\pi}{3}[/tex]
Hence, period of given function=[tex]\frac{\pi}{3}[/tex]
Amplitude=2