Respuesta :
Answer:
- The initial speed of the truck is 21.93 m/s, and the initial speed of the car is 19.524 m/s
Explanation:
We can use conservation of momentum to find the initial velocities.
Taking the unit vector [tex]\hat{i}[/tex] pointing north and [tex]\hat{j}[/tex] pointing east, the final velocity will be
[tex] \vec{V}_f = 16.0 \frac{m}{s} \ ( \ cos(24.0 \°) \ , \ sin (24.0 \°) \ )[/tex]
[tex] \vec{V}_f = ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]
The final linear momentum will be:
[tex]\vec{P}_f = (m_{car}+ m_{truck}) * V_f[/tex]
[tex]\vec{P}_f = (950 \ kg \ + 1900 \ kg \ ) * ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]
[tex]\vec{P}_f = (2.850 \ kg \ ) * ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]
[tex]\vec{P}_f = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )[/tex]
As there are not external forces, the total linear momentum must be constant.
So:
[tex]\vec{P}_0= \vec{P}_f [/tex]
As initially the car is travelling east, and the truck is travelling north, the initial linear momentum must be
[tex]\vec{P}_0= ( m_{truck} * v_{truck}, m_{car}* v_{car} )[/tex]
so:
[tex]\vec{P}_0= \vec{P}_f[/tex]
[tex]( m_{truck} * v_{truck}, m_{car}* v_{car} ) = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )[/tex]
so
[tex]\left \{ {{m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s} } \atop {m_{car} \ v_{car}=18,547.8 \frac{kg \ m}{s} }} \right.[/tex]
So, for the truck
[tex]m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s} [/tex]
[tex]1900 \ kg \ v_{truck} = 41,658.45 \frac{ kg \ m}{s} [/tex]
[tex] v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg} [/tex]
[tex]v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg} [/tex]
[tex]v_{truck} = 21.93 \frac{m}{s}[/tex]
And, for the car
[tex]950 \ kg \ v_{car}=18,547.8 \frac{kg \ m}{s}[/tex]
[tex]v_{car}=\frac{18,547.8 \frac{kg \ m}{s}}{950 \ kg}[/tex]
[tex]v_{car}=19.524 \frac{m}{s}[/tex]