At the beginning of the compression process of an air-standard Otto cycle, p1 = 1 bar and T1 = 300 K. The compression ratio is 8.5 and the heat addition per unit mass of air is 1400 kJ/kg. Determine the maximum temperature of the cycle in Kelvin (input a number ONLY). Do not assume specific heats are constant. There is a ±5% tolerance.

Respuesta :

Answer:

Maximum temperature of the cycle is 2231.3 K

Explanation:

See table (values there do not assume constant specific heat) and figure attached.

Assuming ideal gas behaviour, p1*v1 = p2*v2, rearranging p2/p1 = v1/v2

Data

[tex]p_1 = 1 bar [/tex]

[tex]T_1 = 300 K [/tex]

[tex] \frac{v_1}{v_2} = 8.5 [/tex] (compression ratio)

[tex] \frac{Q_{23}}{m} = 1400 kJ/kg [/tex]  (heat addition)

We can use the following relationship  for air

[tex] \frac{v_1}{v_2} = \frac{v_{r1}}{v_{r2}} [/tex]

[tex] v_{r1} [/tex] is only function of temperature and can be taken from table. In this case:

[tex] v_{r1} = 621.2 [/tex]  

Rearranging previous equation

[tex] v_{r2} = v_{r1} \times \frac{v_2}{v_1} [/tex]

[tex] v_{r2} = 621.2 \times \frac{1}{8}[/tex]

[tex] v_{r2} = 73.082 [/tex]

Interpolating from table

[tex] u_2 = 503.06 kJ/kg [/tex]

Energy balance in the process 2-3 gives

[tex] \frac{Q_{23}}{m} = u_3 - u_2 [/tex]  

[tex] u_3 = \frac{Q_{23}}{m} + u_2 [/tex]  

[tex] u_3 = 1400 kJ/kg + 503.06 kJ/kg [/tex]  

[tex] u_3 = 1903.06 kJ/kg [/tex]  

Interpolating from table

[tex] T_3 = 2231.3 K [/tex]

Ver imagen jbiain
Ver imagen jbiain