A thin metal bar, insulated along its sides, is composed of five different metal connected together. The left end bar is immersed in a heat bath at 100°C and right end in a heat bath at 0°C. Starting at the left end, the pieces and lenghts are steel(2cm), brass(3cm), copper(1cm), aluminum(5cm) and silver(1cm). What is the temperature of the steel/brass interface?

Respuesta :

Answer:

T = 61.06 °C  

Explanation:

given data:

a thin metal bar consist of 5 different material.

thermal conductivity of ---

K {steel} = 16 Wm^{-1} k^{-1}

K brass = 125 Wm^{-1} k^{-1}

K copper = 401 Wm^{-1} k^{-1}

K aluminium =30Wm^{-1} k^{-1}

K silver = 427 Wm^{-1} k^{-1}

[tex]\frac{d\theta}{dt} = \frac{KA (T_2 -T_1)}{L}[/tex]

WE KNOW THAT

[tex]\frac{l}{KA} = thermal\ resistance[/tex]

total resistance of bar = R steel + R brass + R copper + R aluminium + R silver

[tex]R_{total} =\frac{1}[A} [\frac{0.02}{16} +\frac{0.03}{125} +\frac{0.01}{401} +\frac{0.05}{30} +\frac{0.01}{427}][/tex]

[tex]R_{total} =\frac{1}[A} * 0.00321[/tex]

let T is the temperature at steel/brass interference

[tex]\frac{d\theta}{dt}[/tex] will be constant throughtout the bar

therefore we have

[tex]\frac{100-0}{R_{total}} = \frac{100-T}{R_{steel}}[/tex]  

[tex]\frac{100-0}{0.00321} *A = \frac{100-T}{0.00125} *A[/tex]

solving for T  we get

T = 61.06 °C