Respuesta :
Answer:
T = 61.06 °C
Explanation:
given data:
a thin metal bar consist of 5 different material.
thermal conductivity of ---
K {steel} = 16 Wm^{-1} k^{-1}
K brass = 125 Wm^{-1} k^{-1}
K copper = 401 Wm^{-1} k^{-1}
K aluminium =30Wm^{-1} k^{-1}
K silver = 427 Wm^{-1} k^{-1}
[tex]\frac{d\theta}{dt} = \frac{KA (T_2 -T_1)}{L}[/tex]
WE KNOW THAT
[tex]\frac{l}{KA} = thermal\ resistance[/tex]
total resistance of bar = R steel + R brass + R copper + R aluminium + R silver
[tex]R_{total} =\frac{1}[A} [\frac{0.02}{16} +\frac{0.03}{125} +\frac{0.01}{401} +\frac{0.05}{30} +\frac{0.01}{427}][/tex]
[tex]R_{total} =\frac{1}[A} * 0.00321[/tex]
let T is the temperature at steel/brass interference
[tex]\frac{d\theta}{dt}[/tex] will be constant throughtout the bar
therefore we have
[tex]\frac{100-0}{R_{total}} = \frac{100-T}{R_{steel}}[/tex]
[tex]\frac{100-0}{0.00321} *A = \frac{100-T}{0.00125} *A[/tex]
solving for T we get
T = 61.06 °C