Answer:
(a). The wavelength of photon is 914 A.
(b). The temperature of the black body whose spectrum peaks at wavelength is 31706.78 K.
Explanation:
Given that,
Ionization energy = 13.6 eV
(a). We need to calculate the wavelength
Using formula of wavelength
[tex]E=\dfrac{hc}{\lambda}[/tex]
[tex]\lambda=\dfrac{hc}{E}[/tex]
Where, h = Planck constant
c = speed of light
E = energy
Put the value into the formula
[tex]\lambda=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{13.6\times1.6\times10^{-19}}[/tex]
[tex]\lambda=9.14\times10^{-8}\ m[/tex]
[tex]\lambda=914\ \AA[/tex]
The wavelength of photon is 914 A.
(b). We need to calculate the temperature of the black body whose spectrum peaks at wavelength
Using Wien's displacement law
[tex]\lambda_{max} T=2.898\times10^{-3}[/tex]
[tex]T=\dfrac{2.898\times10^{-3}}{\lambda}[/tex]
Put the value of wavelength
[tex]T=\dfrac{2.898\times10^{-3}}{914\times10^{-10}}[/tex]
[tex]T=31706.78\ K[/tex]
The temperature of the black body whose spectrum peaks at wavelength is 31706.78 K.
Hence, This is the required solution.