Answer:
number of way is [tex]\frac{59!}{50)!9!}[/tex]
Step-by-step explanation:
given data:
total number of problems 100
total points for each problem 5
let ten problems are
[tex]x_1, x_2,........., x_{10}[/tex]
according to the given information
[tex]x_1 +x_2 +.......+x_{10} = 100[/tex]
[tex]x_i \geq 5[/tex]
where i =1 + 10
so, number of way integer point can assign are
[tex]^{(n+r-1)}C_{(r-1)}[/tex]
where
r = 10
[tex]n = 100 - 10\times 5 = 50[/tex]
so, we have
[tex]^{(59)}C_{9}[/tex]
[tex]\frac{59!}{59-9)!9!}[/tex]
number of way is [tex]\frac{59!}{50)!9!}[/tex]