A parallel-plate capacitor is formed from two 2.0 cm x 2.0 cm electrodes spaced 2.2 mm apart. The electric field strength inside the capacitor is 1.0×10^6 N/C. Part A What is the charge (in nC) on the positive electrode? Express your answer in nanocoulombs.

Respuesta :

Answer:

3.54 nC.

Explanation:

Given:

  • Dimensions of the electrodes of parallel-plate capacitor = [tex]2.0\ cm \times 2.0\ cm.[/tex]
  • Separation between the electrodes, [tex]d=2.2\ mm = 2.2\times 10^{-3}\ m.[/tex]
  • Electric field strength inside the capacitor, [tex]E = 1.0\times 10^6\ N/C.[/tex]

The surface area of each of the electrode is given by

[tex]A=2.0\ cm \times 2.0\ cm = 4.0\ cm^2 = 4.0\times 10^{-4}\ m^2.[/tex]

The strength of the electric field inside a capacitor is given by

[tex]E = \dfrac{\sigma}{\epsilon_o}[/tex]

where,

  • [tex]\epsilon_o[/tex] = electrical permittivity of free space = [tex]8.85\times 10^{-12}\ C^2N^{-1}m^{-2}[/tex]
  • [tex]\sigma[/tex] = surface charge density of the electrode = [tex]\dfrac qA[/tex]
  • [tex]q[/tex] = charge on the electrode.

Therefore,

[tex]E = \dfrac{q}{A\epsilon_o}\\q=EA\epsilon_o\\=1.0\times 10^6\times 4.0\times 10^{-4}\times 8.85\times 10^{-12}\\=3.54\times 10^{-9}\ C\\=3.54\ nC.[/tex]

It is the charge on the positive electrode.

The value of an electric field at a particular point is known as the strength of the electric field. the value of the charge will be 3.54 NC.

What is the strength of the electric field?

The electric field is the area around an electric charge where its impact may be felt. The force encountered by a unit positive charge put at a spot is the electric field strength at that point.

Electrode dimension = 2.0 cm×2.0 cm

Area of electrode = 4.0 cm²

seperated distance beween electrode = 2.2 mm = 2.2 × 10⁻³ m

strength of electric field = E = 1.0 × 10⁶ N/C

Electric field strength is given by

[tex]\rm E = \frac{\sigma}{\varepsilon_0}[/tex]

where,

[tex]\varepsilon_0[/tex]= electrical permittivity of free space

[tex]\sigma[/tex] = surface charge density of the electrode

q=Electrode charge

[tex]\rm \sigma =\RM{ \frac{q}{A} }[/tex]

[tex]\rm E = \frac{q}{A\varepsilon_0}[/tex]

[tex]\rm q = \sigma{A\varepsilon_0}[/tex]

[tex]\rm q =1.0\times 10^-6\times 4.0\times10^{-4}\times 8.85 \times 10^-12[/tex]

[tex]\rm q = 3.54\times 10^-9 \; C[/tex]  

[tex]\rm q = 3.54\; nC[/tex]

Hence the value of the charge will be 3.54 NC.

To learn more about the electric field strength refer to the link;

https://brainly.com/question/4264413