Respuesta :

Answer with Step-by-step explanation:

We are given that two matrices A and B are square matrices of the same size.

We have to prove that

Tr(C(A+B)=C(Tr(A)+Tr(B))

Where C is constant

We know that tr A=Sum of diagonal elements of A

Therefore,

Tr(A)=Sum of diagonal elements of A

Tr(B)=Sum of diagonal elements of B

C(Tr(A))=[tex]C\cdot[/tex] Sum of diagonal elements of A

C(Tr(B))=[tex]C\cdot[/tex] Sum of diagonal elements of B

[tex]C(A+B)=C\cdot (A+B)[/tex]

Tr(C(A+B)=Sum of diagonal elements of (C(A+B))

Suppose ,A=[tex]\left[\begin{array}{ccc}1&0\\1&1\end{array}\right][/tex]

B=[tex]\left[\begin{array}{ccc}1&1\\1&1\end{array}\right][/tex]

Tr(A)=1+1=2

Tr(B)=1+1=2

C(Tr(A)+Tr(B))=C(2+2)=4C

A+B=[tex]\left[\begin{array}{ccc}1&0\\1&1\end{array}\right]+\left[\begin{array}{ccc}1&1\\1&1\end{array}\right][/tex]

A+B=[tex]\left[\begin{array}{ccc}2&1\\2&2\end{array}\right][/tex]

C(A+B)=[tex]\left[\begin{array}{ccc}2C&C\\2C&2C\end{array}\right][/tex]

Tr(C(A+B))=2C+2C=4C

Hence, Tr(C(A+B)=C(Tr(A)+Tr(B))

Hence, proved.