Answer:
Explanation:
[tex]r^2 = [\frac{l}{2}]^2 +[\frac{l}{2}]^2[/tex]
[tex]r^2 = \frac{2l^2}{4}[/tex]
[tex]r^2 = \frac{l^2}{2}[/tex]
we know that electric field is given as
[tex]E = \frac{kq}{r^2}[/tex]
from the figure electric field c and electric field a CANCEL OUT EACH OTHER
so, we have E_B and E_D is toward -q direction
[tex]E_{net} = 2E = 2* \frac{kq}{r^2} = \frac{2kq}{r^2}[/tex]
[tex]E_{net} =\frac{2kq}{(\frac{l}{2})^2}[/tex]
[tex]E_{net} =\frac{4kq}{l^2}[/tex]
[tex]E_{net} = \frac{4*9*10^{9} *3.2*10^{-9}}{(2*10^{-2})^2}[/tex]
[tex]E_{net} = 28.8 *10^{-4} N/C[/tex]