Answer:
Explanation:
The force [tex]\vec{F}[/tex] on a charge q made by an electric field [tex]\vec{E}[/tex] its
[tex]\vec{F} = q \vec{E}[/tex]
The electric charge of the electron its
[tex]q \ = \ - \ 1.602 \ 10 ^{-19} \ C[/tex].
Taking the unit vector [tex]\hat{i}[/tex] pointing towards the east, the electric field will be:
[tex]\vec{E}= 3400 \ \frac{N}{C} \ \hat{i}[/tex].
So, the force will be:
[tex]\vec{F} = \ - \ 1.602 \ 10 ^{-19} \ C \ * \ 3400 \ \frac{N}{C} \ \hat{i} [/tex]
[tex]\vec{F} = \ - \ 5446.8 \ 10 ^{-19} \ N \ \hat{i} [/tex]
[tex]\vec{F} = \ - \ 5.4468 \ 10 ^{-16} \ N \ \hat{i} [/tex]
[tex]\vec{F} = \ - \ 5.4468 \ 10 ^{-16} \ N \ \hat{i} [/tex]
[tex]\vec{F} = \ - \ 5.4468 \ 10 ^{-16} \ N \ \hat{i} [/tex]
So, the force its [tex] \ 5.4468 \ 10 ^{-16} [/tex] N to the west.