contestada

Find the two values of k for which y(x) = e^kx is a solution of the differential equation y'' - 20y' + 91y = 0. Preview smaller value = larger value = Preview

Respuesta :

Answer:

The values of k are

1) k = 7.

2) k= 13

Step-by-step explanation:

The given differential equation is

[tex]y''-20y'+91y=0[/tex]

Now since it is given that [tex]y=e^{kx}[/tex] is a solution thus it must satisfy the given differential equation thus we have

[tex]\frac{d^2}{dx^2}(e^{kx})-20\frac{d}{dx}e^{kx}+91e^{kx}=0\\\\k^{2}\cdot e^{kx}-20\cdot k\cdot e^{kx}+91e^{kx}=0\\\\e^{kx}(k^{2}-20k+91)=0\\\\k^{2}-20k+91=0[/tex]

This is a quadratic equation in 'k' thus solving it for k we get

[tex]k=\frac{20\pm \sqrt{(-20)^2-4\cdot 1\cdot 91}}{2}\\\\\therefore k=7,k=13[/tex]