Answer: $59313.58
Step-by-step explanation:
Formula to find the accumulated amount of the annuity is given by :-
[tex]FV=A(\frac{(1+\frac{r}{m})^{mt})-1}{\frac{r}{m}})[/tex]
, where A is the annuity payment deposit, r is annual interest rate , t is time in years and m is number of periods.
Given : m= $2000 ; m= 1 [∵ its annual] ; t= 10 years ; r= 0.06
Now substitute all these value in the formula , we get
[tex]FV=(4500)(\frac{(1+\frac{0.06}{1})^{1\times10})-1}{\frac{0.06}{1}})[/tex]
⇒ [tex]FV=(4500)(\frac{(1.06)^{10})-1}{0.06})[/tex]
⇒ [tex]FV=(4500)(\frac{0.79084769654}{0.06})[/tex]
⇒ [tex]FV=(4500)(13.1807949423)[/tex]
⇒ [tex]FV=59313.5772407\approx59313.58 \ \ \text{ [Rounded to the nearest cent]}[/tex]
Hence, the accumulated amount of the annuity= $59313.58