Respuesta :

Answer:

Part 1) The distance is [tex]d=7.3\ units[/tex]

Part 2) The measure of angle 2 is 121°

Part 3) The coordinates of endpoint V are (7,-27)

Part 4) The value of x is 10

Step-by-step explanation:

Part 1) Find the distance between M(6,16) and Z(-1,14)

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the given values in the formula

[tex]d=\sqrt{(14-16)^{2}+(-1-6)^{2}}[/tex]

[tex]d=\sqrt{(-2)^{2}+(-7)^{2}}[/tex]

[tex]d=\sqrt{53}\ units[/tex]

[tex]d=7.3\ units[/tex]

Part 2) Find the measure m∠2

we know that

If two angles are supplementary, then their sum is equal to 180 degrees

In this problem we have

m∠1+m∠2=180°

substitute the given values

[tex](4y+7)\°+(9y+4)\°= 180\°[/tex]

Solve for y

[tex](13y+11)\°= 180\°[/tex]

[tex]13y= 180-11[/tex]

[tex]13y=169[/tex]

[tex]y=13[/tex]

Find the measure of  m∠2

[tex](9y+4)\°[/tex]

substitute the value of y

[tex](9(13)+4)=121\°[/tex]

Part 3) The midpoint of UV is (5,-11). The coordinates of one endpoint are U(3,5) Find the coordinates of endpoint V

we know that

The formula to calculate the midpoint between two points is

[tex]M=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

we have

[tex]M(5,-11)[/tex]

[tex](x1,y1)=(3,5)[/tex]

substitute and solve for (x2,y2)

[tex](5,-11)=(\frac{3+x2}{2},\frac{5+y2}{2})[/tex]

so

Equation 1

[tex]5=(3+x2)/2[/tex]

[tex]10=3+x2[/tex]

[tex]x2=7[/tex]

Equation 2

[tex]-11=(5+y2)/2[/tex]

[tex]-22=(5+y2)[/tex]

[tex]y2=-27[/tex]

therefore

The coordinates of endpoint V are (7,-27)

Part 4) GI bisects ∠DGH so that ∠DGI is (x-3) and ∠IGH is (2x-13) Find the value of x

we know that

If GI bisects ∠DGH

then

∠DGI=∠IGH

Remember that bisects means, divide into two equal parts

substitute the given values

[tex]x-3=2x-13[/tex]

solve for x

[tex]2x-x=-3+13[/tex]

[tex]x=10[/tex]