In a combustion furnace, 2094 standard ft3 per hour
of natural gas (Methane) is burned with 6% excess air.
How many standard ft3 of air are drawn from outside
per hour by the fan that supplies the air?

Respuesta :

Explanation:

The chemical reaction is as follows.

            [tex]CH_{4} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O[/tex]

It is given that 2094 [tex]ft^{3}/hr[/tex]. And, it is known that 1 [tex]m^{3}/s[/tex] = 127133 [tex]ft^{3}/hr[/tex]

Hence, convert 2094 [tex]ft^{3}/hr[/tex] into [tex]m^{3}/s[/tex] as follows.

                [tex]\frac{2094 ft^{3}/hr}{127133 ft^{3}/hr} \times 1 m^{3}/s[/tex]

                  = [tex]0.0165 m^{3}/s[/tex]

As ideal gas equation is PV = nRT. So, calculate the number of moles as follows.

                   n = [tex]\frac{PV}{RT}[/tex]

                      = [tex]\frac{1 atm \times 0.0165 m^{3}}{0.0821 \times 298 K}[/tex]

                       = 0.673 mol/sec

According to the stoichiometry of the given reaction, 1 mol of methane reacts with 2 mol of oxygen.

So, 1 mol [tex]CH_{4}[/tex] = 2 mol [tex]O_{2}[\tex]

Hence, [tex]O_{2}[\tex] required theoretically = [tex]2 \times 0.673 mol/s[/tex] = 1.346 mol/s

Hence, air required theoretically = [tex]\frac{1.346}{0.21}[/tex] = 6.4095 mol/s.

Since, 6% of excess air is being supplied. Therefore, total air supplied will be calculated as follows.

                Total air supplied = [tex]6.4095 mol/s [1 + \frac{6}{100}][/tex]

                                              = 6.794 mol/s

Now, calculate the volume using ideal gas law equation as follows.

                            PV = nRT

           [tex]1 atm \times V = 6.794 mol/s \times 8.21 \times 10^{-5} Latm/K mol \6 times 298 K[/tex]

                           V = 0.166229 [tex]m^{3}/s[/tex]

Converting calculated volume into [tex]ft^{3}/hr[/tex] as follows.

                  1 [tex]m^{3}/s[/tex] = 127133 [tex]ft^{3}/hr[/tex]

So,        0.166229 [tex]m^{3}/s[/tex] = [tex]0.166229 m^{3}/s \times 127133 \frac{ft^{3}/hr}{1 m^{3}/s}[/tex]  

                                        = 21133.191 [tex]ft^{3}/hr[/tex]

Thus, we can conclude that 21133.191 [tex]ft^{3}/hr[/tex] of air are drawn from outside  per hour by the fan that supplies the air.